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About me

* Postdoc fellow at Center for Soft and Living
Matter @ Penn

* Princeton *24 - Sal Torquato group
« Statistical mechanics, chemical physics,
metamaterials design
* Penn - Biophysics & systems biology via
computational modeling
* “Algorithms that cells live by”




engineer

« Metamaterials are natural or engineered
materials whose properties arise from meso- or
macro-scale structure—not just chemical
composition on the molecular level

* 3D printed structures
* Knitted fabrics

* Origami/Kirigami

* Hydrogels

* Actin cortex, a network made of actin
filaments.

* Located beneath the cell membrane, it supports
cell shape and regulates mechanic responses. Hydrogel




The actin cortex is both rigid and highly dynamic

* Tensional rigidity:
* Average coordination number3 <z < 4is
below Maxwellian isostaticity Z = 6

* Prestressed filaments shifts the floppy-rigid
phase transition to smaller z

* Filaments and crosslinkers undergo fast
turnover; 7~30 seconds (Fritzsche 2013)
* Regulated by actin-binding proteins:
motors, severing proteins and crosslinkers
e Can take up to 50% of ATP hydrolysis!

* Why and how?




Mechano-sensitive dynamics: “use it or lose it”
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Catch bond * For crosslinkers
Slip bond

* Weak catch bonds can make stronger networks

Lifetime

* Common crosslinkers (a-actinin, vinculin)
exhibit crosslinking property

Force
Mulla et al. 2022 °



Goals

* To understand how tensional rigidity of the actin cortex can persist amid complete structural
turnover.

* To understand the role of mechano-sensitive local rules in rigidity homeostasis:

* Can cortex-like behavior emerge from a minimal set of rules governing filament and crosslinker
dynamics?

* To study topological and geometrical properties of the cortex models.






z < 4 for every node

Actin filaments = edges; Crosslinkers = nodes
Incorporation and pruning of filaments - Addition/deletion of edges
Binding/unbinding of crosslinkers = Splits and merges of nodes: z; «— z; — 1 and 1

Assume tension-dominated regime: no bending rigidity



Dynamic edge model

Tension-inhibited pruning. An edge
under low tension below threshold
®f is always removed

Removal of low-
tension edge

;B Removalof =
& di—>

 Small fraction of random pruning. An
edge can be randomly removed with

a small probability regardless of its Marco A. Galvani Cunha
tension

random edge
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Insertion of pre-_ - Insertion of prestrained edges. Energy
! strained edge . . .
! Is injected
;B

L s - Steric repulsion. New nuclei are
preferentially formed where the local

filament density is smaller



Dynamic node model

Force-sensitive disassembly. A node
splits into nodes with degreesz — 1 and 1
if the tension on one of its edges <
threshold Oy

Small fraction of random disassembly.
A nodes can be randomly split with a
small probability regardless of tensions
on the associated edges

Assembly + Energy injection. Az = 1
node merges with its nearest z < 3 node
in a capture sphere of radius R,

Steric repulsion. To orient edges at large
angles
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Elastic networks: Excellent models for metamaterials

* Elastic network have been “rediscovered” many times in biology and civilizations alike!
* Lightweight yet stiff, saves materials
* Highly programmable structures down to individual edges and nodes

* “Many more is more different”

* | developed a package, ElasticNetwork.jl, to treat them generally.



The Network data structure

v ElasticNetworks.Network — Type

mutable struct Network

Models a Hookean spring network.

Fields

g::SimpleGraph : Graph specifying the connectivity of the network.

» basis::Matrix{Float64} : Basis for the nodes.

» points::Matrix{Float64} : Coordinates of the nodes in space.

« rest_lengths::Dict{Graphs.SimpleGraphs.SimpleEdge{Int64}, Float64} : Rest lengths of the spring
edges in the network.

« image_info::Dict{Graphs.SimpleGraphs.SimpleEdge{Int64}, Vector{Int}} : Specifies which image
of node J node 1 is connected to in periodic boundary conditions.

« youngs::Dict{Graphs.SimpleGraphs.SimpleEdge{Int64}, Float64} : Young’s modulus of the spring
edges, defining their stiffness.



Demo:
Create & modify networks & Compute elasticity tensor

ElasticNetworks

1m 36.4s

l1=10
€ = 0.05

diamond_net

v 03s

collect(edges(diamond_net.g))

1.0s

2000-element Vector{Graphs.SimpleGraphs.SimpleEdge{Int64}}:
Edge 1 => 501

Edge 1 => 746

Edge 1 => 775

Edge 1 => 980

ElasticNetworks.rem_edge!(diamond_net, 1, 501)

0.2s

relax! (diamond_net)
visualize net(diamond net)

diamond1@ee(l, e)
visualize net(diamond_net)

julia> moduli(d)[3]
6x6 Matrix{Float64}:

0.253246
0.232323
0.232323
2.30984e-17
1.65179%e-17
1.72611e-17

0.232323
0.253246
0.232323
1.62234e-17
1.38788e-17
1.88164e-17

0.232323
0.232323
0.253246
1.77788e-17
1.794%e-17
9.92385e-17

2.30984e-17
1.62234e-17
1.77788e-17
0.0401173
1.06088e-16
-2.43431e-18

1.65179%e-17
1.38788e-17
1.794%9e-17
1.06088e-16
0.0401173
-4.73978e-19

1.72611e-17
1.88164e-17
9.92385e-17
-2.43431e-18
-4.73978e-19
0.0401173
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Rigidity homeostasis with complete edge turnover
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Rigidity homeostasis with complete node turnover
Timestep = 8000 ) \

——=Edge turnover
= Turnover due to random splitting

Exponential decay of node
labels

Fraction of Unchanged Nodes, v

0.10 2 Turnover time scale 7, = 173
10 °F .
timesteps
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Structural properties also reach steady states

Edge model
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Fraction of Unchanged Edges, 7,

Ingredients in our models are indeed minimal

1.00

o
©
u-l

0.90

0.85

0.80

Edge model

500 1000 1500 2000

Fails to turn over w/o
random pruning

Loses rigid

inhibited p

25 50 75
Iterations, ¢

100

0.5

0.4

0.3 m

Energy,

10.1

ity w/o tension-

runin
0.0 g

v

Fraction of Unchanged Nodes, ~

1.00

0.75

0.50

0.25

0.00

Node model

Fails to turn over w/o
random node splitting

- Loses rigidity w/o force-
sensitive splitting in 5
iterations [not shown]

0 100 200 300 400 500
Iterations, t

600

19



Network constituents undergo diffusion

Edge model Node model
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No permanently protected local structures or correlations.
Models capture viscoelasticity: Elasticity is partially stored and partially dissipated.
Representational drift: Shifting microscopic encoding for a steady global function.
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Networks can heal from severe damages
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The actin cortex as a graph theorist?

0.020

* Consider the steady state of the dynamic edge model 0.015

» 7z =3.992, very close to the diamond network for which z = 4 for every node $0.010

* Mean edge tension = 0.85% 0.005

* B=0.283,G =0.0298

* For a diamond network with the same mean edge tension and edge
rest length (“stuff”’) per volume:

* B=0.453,6 =0.0159

* Note the “tradeoff” between bulk and shear moduli.




The actin cortex as a graph theorist?
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* Now consider the steady state of the dynamic node model
e 7=13.82,B=0.181,G = 0.0352

* Mean edge tension = 3.00%

* For a diamond network with the same mean edge tension and edge
rest length per volume:

e Zz=4,B =0.239,G = 0.0282

* The cortex model resists shear better despite a lower Z.

* How does the topology of the actin network allow it to achieve higher
shear modulus than the diamond network?




Graph theoretical metrics

* Triangles resist shear, so we count triangular loops:

* Mean number of triangles per node = 0.177 for edge model, 0.218 for node
model, 0 for diamond.

Thus:
* There are many more triangular
loops in the cortex models than
N -1 .
C(z) = in diamond network

>, d(y,z) * The cortex models are “denser”
* Mean closeness centrality = 0.156 for edge n}{odel, 0.133 for node model, 0.124 . .
topologically than the diamond

for diamond.

* Closeness centrality: The reciprocal of the sum of shortest path lengths between
the node and all other nodes in the graph.

network
 Betweenness centrality: The degree to which nodes stand between each other * Paths between nodes pass
(v) through fewer bottleneck nodes
Tst\U - Robust to damage
gv) =Y _ g

Ost

s#vF£L
* Mean betweenness centrality = 0.00398 for edge model, 0.00617 for node
model, 0.00708 for diamond.

Experiments welcome!!




Summary

* Elements needed for rigidity homeostasis:
* Force-sensitive disassembly
 Small fraction of random disassembly

* Energy injection (upon assembly)

* Graph-theoretical metrics allows us to elucidate how cells
exploit topology to build stronger biopolymer networks.

* Future: Can our networks remain rigid (desired output) under
fluctuating stresses (inputs)?
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