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About me

• Postdoc fellow at Center for Soft and Living 
Matter @ Penn

• Princeton *24 – Sal Torquato group

• Statistical mechanics, chemical physics, 
metamaterials design

• Penn – Biophysics & systems biology via 
computational modeling

• “Algorithms that cells live by”



The cell as a mechanical 
engineer

• Metamaterials are natural or engineered 
materials whose properties arise from meso- or 
macro-scale structure—not just chemical 
composition on the molecular level

• 3D printed structures

• Knitted fabrics

• Origami/Kirigami

• Hydrogels

• Actin cortex, a network made of actin 
filaments. 

• Located beneath the cell membrane, it supports 
cell shape and regulates mechanic responses.



The actin cortex is both rigid and highly dynamic

Stossel et al. 2001

Chalut & Paluch 2016

• Tensional rigidity: 
• Average coordination number 3 < ̅𝑧𝑧 < 4 is 

below Maxwellian isostaticity ̅𝑧𝑧 = 6
• Prestressed filaments shifts the floppy-rigid 

phase transition to smaller ̅𝑧𝑧
• Filaments and crosslinkers undergo fast 

turnover; 𝜏𝜏~30 seconds (Fritzsche 2013)
• Regulated by actin-binding proteins: 

motors, severing proteins and crosslinkers
• Can take up to 50% of ATP hydrolysis!

• Why and how?



Mechano-sensitive dynamics: “use it or lose it”

• For filaments

• At biologically accessible strains (5%), random 

pruning of filaments destroy rigidity at ̅𝑧𝑧 > 4.
• Tension-inhibited pruning of filaments 

preserves rigidity at ̅𝑧𝑧 ≤ 4.

• For crosslinkers

• Weak catch bonds can make stronger networks

• Common crosslinkers (𝛼𝛼-actinin, vinculin) 

exhibit crosslinking property

Galvani et al. 2025

Mulla et al. 2022

Marco A. Galvani Cunha et al.
Phys. Rev. Research 2025
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• To understand how tensional rigidity of the actin cortex can persist amid complete structural 
turnover. 

• To understand the role of mechano-sensitive local rules in rigidity homeostasis: 

• Can cortex-like behavior emerge from a minimal set of rules governing filament and crosslinker 
dynamics?

• To study topological and geometrical properties of the cortex models.

Goals



Models



Model cortex as spring network

• Actin filaments  edges; Crosslinkers  nodes

• Incorporation and pruning of filaments  Addition/deletion of edges

• Binding/unbinding of crosslinkers  Splits and merges of nodes: 𝑧𝑧𝑖𝑖 ←→  𝑧𝑧𝑖𝑖 − 1 and 1

• Assume tension-dominated regime: no bending rigidity

𝑧𝑧 ≤ 4 for every node
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Dynamic edge model

Marco A. Galvani Cunha

• Tension-inhibited pruning. An edge 
under low tension below threshold 
Θ𝐸𝐸  is always removed

• Small fraction of random pruning. An 
edge can be randomly removed with 
a small probability regardless of its 
tension

• Insertion of prestrained edges. Energy 
is injected

• Steric repulsion. New nuclei are 
preferentially formed where the local 
filament density is smaller



Dynamic node model

• Force-sensitive disassembly. A node 

splits into nodes with degrees 𝑧𝑧 − 1 and 1 

if the tension on one of its edges < 

threshold ΘV 

• Small fraction of random disassembly. 
A nodes can be randomly split with a 

small probability regardless of tensions 

on the associated edges

• Assembly + Energy injection. A 𝑧𝑧 = 1 
node merges with its nearest 𝑧𝑧 ≤ 3 node 

in a capture sphere of radius 𝑅𝑅𝑐𝑐

•  Steric repulsion. To orient edges at large 

angles

+

𝑅𝑅𝑐𝑐
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Interlude:
Infrastructure 
for elastic 
networks



Elastic networks: Excellent models for metamaterials

• Elastic network have been “rediscovered” many times in biology and civilizations alike!
• Lightweight yet stiff, saves materials

• Highly programmable structures down to individual edges and nodes

• “Many more is more different”

• I developed a package, ElasticNetwork.jl, to treat them generally.



The Network data structure



Demo: 
Create & modify networks & Compute elasticity tensor



Results for 
rigidity 
homeostasis 
of the actin 
cortex



Rigidity homeostasis with complete edge turnover
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Turnover time scale 𝜏𝜏 
= 1335 timesteps

Exponential decay of edge 
labels

Mechanical properties 
reach steady states



Rigidity homeostasis with complete node turnover
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Turnover time scale 𝜏𝜏𝑉𝑉 = 173 
timesteps

Exponential decay of node 
labels

Mechanical properties 
reach steady states



Structural properties also reach steady states

Edge model



Ingredients in our models are indeed minimal

19

Loses rigidity w/o tension-
inhibited pruning

Fails to turn over w/o 
random pruning

Edge model Node model

Fails to turn over w/o 
random node splitting

Loses rigidity w/o force-
sensitive splitting in 5 
iterations [not shown]



Network constituents undergo diffusion
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Edge model Node model

No permanently protected local structures or correlations.
Models capture viscoelasticity: Elasticity is partially stored and partially dissipated.
Representational drift: Shifting microscopic encoding for a steady global function. 



Networks can heal from severe damages
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The mechanical properties recover much faster than structural properties



The actin cortex as a graph theorist?

• Consider the steady state of the dynamic edge model

• ̅𝑧𝑧 = 3.992, very close to the diamond network for which 𝑧𝑧 = 4 for every node

• Mean edge tension = 0.85%

• 𝐵𝐵 = 0.283,𝐺𝐺 = 0.0298

• For a diamond network with the same mean edge tension and edge 
rest length (“stuff”) per volume: 

• 𝐵𝐵 = 0.453,𝐺𝐺 = 0.0159
• Note the “tradeoff” between bulk and shear moduli.



The actin cortex as a graph theorist?

• Now consider the steady state of the dynamic node model

• ̅𝑧𝑧 = 3.82,𝐵𝐵 = 0.181,𝐺𝐺 = 0.0352 

• Mean edge tension = 3.00%

• For a diamond network with the same mean edge tension and edge 
rest length per volume: 

• ̅𝑧𝑧 = 4,𝐵𝐵 = 0.239,𝐺𝐺 = 0.0282
• The cortex model resists shear better despite a lower ̅𝑧𝑧.

• How does the topology of the actin network allow it to achieve higher 
shear modulus than the diamond network?



Graph theoretical metrics

• Triangles resist shear, so we count triangular loops:

• Mean number of triangles per node = 0.177 for edge model, 0.218 for node 
model, 0 for diamond.

• Closeness centrality: The reciprocal of the sum of shortest path lengths between 
the node and all other nodes in the graph.

• Mean closeness centrality = 0.156 for edge model, 0.133 for node model, 0.124 
for diamond.

• Betweenness centrality:  The degree to which nodes stand between each other

• Mean betweenness centrality = 0.00398 for edge model, 0.00617 for node 
model, 0.00708 for diamond.

Thus:
• There are many more triangular 

loops in the cortex models than 
in diamond network

• The cortex models are “denser” 
topologically than the diamond 
network

• Paths between nodes pass 
through fewer bottleneck nodes 
 Robust to damage

Experiments welcome!!



Summary

• Elements needed for rigidity homeostasis:
• Force-sensitive disassembly

• Small fraction of random disassembly

• Energy injection (upon assembly)

• Graph-theoretical metrics allows us to elucidate how cells 
exploit topology to build stronger biopolymer networks.

• Future: Can our networks remain rigid (desired output) under 
fluctuating stresses (inputs)?

25



Acknowledgements

Andrea J. Liu John C. Crocker Marco A. Galvani Cunha

26

Preprint on arXiv soon!
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