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Inverse statistical mechanics:
Assemble structures through designed interactions

Microscopic
interactions

Stat. mech.

Macroscopic structures

Inverse stat. mech. and properties

The pair correlation function g,(r) is a scaled histogram of pair distances.

 Computationally simple

 Experimentally available via scattering

« Contains information e.g., pressure - 3

"Doppelganger” of g,(r) in Fourier space: ;’;‘f /®/ 1:7:}_,2
The structure factor S(k) =1 + ph(k) t | !
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g, for a 3D hard-sphere fluid.
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Torquato, Random Heterogeneous Materials (2002).



Motivation 1:

Knowledge of analytical pair functions is limited

* There exist only a small number of disordered many- ™,

particle systems whose pair functions are known
analytically over their entire parameter regime.
« Determinantal point processes, e.g., free Fermi gases
* 1D equilibrium hard rods
* "Ghost” RSA across dimensions
« 2D and 3D unit-step function g,

* Expanding this database enables the analytical
exploration of equilibrium and nonequilibrium
properties and materials design.

Torquato, Soft Matter (2009).



Motivation 2:
The realizability problem

Can any mathematical function be the g,(r) for some
many-body system?

Known necessary (but insufficient) conditions for
realizability:

N * g,(r) = 0forallr.
« S(k) = 0 forall k.

 The Yamada condition

(r)

* An uncountable number of necessary and sufficient
conditions are generally required

We need highly accurate numerical algorithms to
probe the realizability.

5 Torquato and Stillinger, Expt. Math. (2006)



Motivation 3:
Design large-scale correlations

* Hyperuniform state: Il{irr(l)S(k) = 0. Usually, one has a power law
S(k) ~ k% at small k.
* The exponent a determines the large-R scaling behaviors ot

the number variance.

er_l, a > 1 (class1),
*(R)~{R" " InR, a=1(classll), o*(R) ~ {
k R 0<a<1(classIII).

R, a=0 (typical nonhyperuniform),

R, & <0 (antihyperuniform).

* We consider a broad range of functional forms that span
across a wide spectrum of hyperuniform and nonhyperuniform

classes.

Torquato and Stillinger, PRE (2003)
6 Torquato, PRE (2021)



Functional form d 2,(r) S(k) a
Gaussian 1,2,3 1 - exp (-nr’) (3) 1- exp(—f) (4) 2
1257 K°
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3366 20736m
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Generalized OCP" 3 1 —exp( 43—”r3) (5) : (6) 2
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Fourier dual of OCP 1 1- m,'H ('Fi e 1 —exp(-k/m) (8) 1
4.6
]"F“(1 3’36’6 '324”r)

2mber: (gﬁn(rz)y‘t) . s

Fourier dual of OCP* 3 + e (9) 1-exp(- 3(2n)3k ) (10) 3
5 3/4
erher_%(%\/in(rz) )
=+
33
Hyperbolic secant g, (r) 1 1 - sech(mr) (11) 1 —sech(k/2) (12) 2
Hyperbolic secant g, (r) " 2 1 - sech(2+/nGr) (13) No closed analytical form 2
2P Y 7tanh [ = 35— |sech %
Hyperbolic secant g, (r) 3 1 - sech(Z~ e " 1) (14) 1- ( !;f_) (’f ) (15) 2
Gaussian-damped polynomial 2 1- ge_’" (4?:2?‘4 — 87 + 3) (16) 1-° & (k lzﬂ_k ) (17) 2
Hermite—Gaussian ™" 1 1- .1(41‘ -127% + S)E_JT (18) 1-Av 211'( —4k* + 12k* - 3)3_% (19) 0
Hyposurficial 3 1+ ”pi: ) exp(—rrl sin(r) (20) & kfﬁ;:'tzf,zﬁj;ff:;ﬁ:ﬂ;;Ilcf+2) (21) 0
5 20(2r-1) ( 3k .
Ghost RSA 1 —ieas (22) 1 -4 cos (k)[Ci(Z) + Ci(2k)] | 0
— 4 sin (k)[Si( %) + si(2k) ] - 22 (23)
Ghost RSA- 2 *m(r*_” = (24) No closed analytical form 0
2—%[&}5_](%)—% 1-§J@(2—r*)

Antihyperuniform™ 1,2,3 O(r/D - 1}( W ]) (25) See Appendix -1




Inverse algorithm
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As suggested in [Zhang and Torquato, PRE
(2020)] , we employ inverse algorithms that
determines classical equilibrium states
with up to pair interactions v(r) at
positive temperature T that precisely match

[ \ﬁ - targeted forms for both g, (r) and S(k).
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Popular previous methods:
Iterative Boltzmann inversion (IBI)

Target pair statistics r—[HT(wh ST(yJ]
v

[PMF / Boltzmann iteration seed

Initial guess potential
(It's exact at p = 0)

Bui(z) = — In[gr(z)]

~—

Next iteration

Simulated pair statistics

If g»(r) is too large, increase energy
at r so that there are fewer particle
pairs with distance r.

Update rule

Buis1(z) = Bui(z) +1n [j" < ]

T\

Soper, Chem. Phys. (1996)



But IBl is not precise enough for our goal...

TLDR: The solution is not unique even if it should be.

- Henderson’s theorem: Given p and T > 0, the pair potential that generates a target
g»(r) at equilibrium is unique up to an additive constant.

In practice, very different potentials can give very similar g, (r).

... because information in the tail of g,(r) is truncated or buried in the noise.

g,(r)
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Solution: Target both g,(r) and S(k).

Wang, Stillinger and Torquato, JCP (2020)



Toward a more effective inverse algorithm

Challenge Solution

Solution is not Define the objective.
unique , )

AR V(a) = —go(r;a)) dr + k) (S7(k) — S(k;a))? dk.
Unclear optimization (a) p/uad e, (r) (82,7(r) — g2(r;a)) " dr (o) /Rd ws (k) (S7(k) — S(k;a))
objective '
Sensitive to Use parametrized smooth analytical potential functions.

simulation noise

v(r,a) = stj(r; a;)
j=1

Too model- Use a more general updating rule, e.g., BFGS, rather than the difference in PMF.
dependent *To compute V¥ (a), simulations are performed at perturbed g;'s and partial
derivative are computed via finite differences.

2n simulations are needed for n potential parameters.

Torquato and Wang, PRE (2022)



Toward a more effective inverse algorithm

- Automatic differentiation can reduce gradient
computation from 0(n) to 0(1)! But it needs a deterministic
objective function, unlike our sBochas®ic ¥Y(a).

«  To use AD, we need a deterministic function ¥ (a’) to
approximate W(a;) for a’ in the vicinity of a;.

2 1
W(a)=p [ we(r) (gr() —ea(ria)) dr+ ——
. Rd P(Zﬂ-) Jed

* We use the canonical ensemble reweigiﬁng technique
[Norgaard et al. Biophys J. (2008)]:

osat) = Sevce, P oxpl-(@(Val) — Br;a0))/T
o > vee, Xpl—(@(rV;a) — B(rN;a;)/T]

where @(x) is g, (r) or S(k).

«  The approximant i(a’) is obtained by inserting ¢(x; a") into
the objective function.

/ ws (k) (S7(k) — S(k;a))* dk,

Small- and
intermediate-r

behaviors (HNC)

behaviors (c(1))

Large-r

izy

@i, = argming (Y(a’))

BFGS with ADT

Find ¥ (a’)

from C;

%simulation

Ensemble of
configurations C;

|

¥(a;)

N>

Yes

End




Hyperuniform equilibrium states

« To achieve equilibrium hyperuniform systems at positive T, which are
thermodynamically incompressible, one requires long-ranged pair
interaction in the large-r limit [Torquato, Phys. Rep. (2018)]

pmd=0) g
v(r) ~ { —In(r), d=o.

 ...as well as a background one-body potential to maintain charge
neutrality.

« Example: Dyson log gas, in which 1D particles interact via the log

potential and are immersed in a uniform background of the opposite
“charge” [Dyson, J. Math. Phys. (1962)].



Results for designed pair correlation functions

« For fluids away from the critical point, convergence can be achieved within 5h on an
Intel 2.8 GHz CPU with 15 cores and 4GB memory per core.
« <24h for critical-point states.



Gaussian pair functions

Gaussian pair statistics
« HU with a = 2.

* Incorporate soft-core short-ranged repulsions in
macromolecules and are commonly used to mode|
polymer systems.

e Self-similar under Fourier transforms.

* Related to Gaussian-core model [Stillinger, JCP (1976)]
 We have realized them in 1, 2 and 3 dimensions.

« Forthe 2D state, it is known that the effective pair
potential is exactly given by v(r) = —2In(r). Our
inverse procedure has accurately recovered this
potential.
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One-component plasmas and their Fourier duals

« OCP

« HU with a = 2. “J'\

. . . . . . % — Target A "ﬁ %& &,

* Represent identical point charges interacting via the . Optimized il - - 5 o8 ©
Coulomb potential and immersed in a rigid uniform oF =l ! ‘:’éﬁ e
background of opposite charge. B B g Po ge

e eégﬁ‘éea Ly

* g(r)=1- EXP(_vl(r)) o 1T 2 3 % 2 4 6 8 10

* Fourier dual of OCP i 4 i

« HUwitha =d
+ S(k) =1—exp(-vy (52))

2 /._h__ — 7 g
* The 3D Fourier dual of OCP is the first known =1/ # Tl
equilibrium system with a > 2.
) . CD 1 2 3 0 2 4 6 8 10
» Large a are desirable for optical purposes because they e W
tend to be effectively transparent for a wide range of (@ (e) @)

wave numbers compared to nonhyperuniform ones.



Hyperbolic secant function g, (r)

* Hyperbolic secant pair functions
« HUwitha =2
« "Leptokurtic’: heavier tailed than Gaussian

« Describe polymers with softer repulsive interactions than
the Gaussian core

* The 3D configuration contains more clusters with

four or more closely spaced particles with pair
1

distancesr < 0.4p 3 compared to the Gaussian

case.

« The effective potential is the least repulsive at
small ramong the 3D hyperuniform model.

9,(7)

(=R \° R VS B SR ¥
T

ko
(b)
60 " |—ocp
— OCP dual
Gaussian
40 — Sech




Gaussian-damped polynomial and Hermite-
Gaussian pair statistics

« They mimic pair statistics for dense polymer 2 2
. . . . . — Target — Target
systems, which often exhibit oscillations due to - Optimized - Optimized
the coordination shells. oyl = 7
* The pair functions are self-similar under Fourier
transforms up to scaling. T2 3 4 s % 2 4 6 8 10
12 -1/2
« Enables one to exploit duality relations in the phase P ko
diagrams. [Torquato and Stillinger, PRL (2008)] ® ®)
* Their low-density and high-density ground-state T e
structures under the effective potentials can be mapped — Target — Target
---- Optimized ---- Optimized

to one another.

* The effective potentials are oscillatory and may
be realized by “sticky” macromolecules, such

as DNA-coated nanoparticles. 0 1 2 3 4 5 0 2 4 6 8

18



Ghost random sequential addition

* Ghost RSA 4 — I a1
* NonHU. The only known model for which all n- ] - d=2
particle correlation functions are exactly solvable. J\ S 2/\/—~
« Spherical particles of diameter D are added according % 2 ced=2 R
to a translationally invariant Poisson process. | 1t
« Asphereis retained iff it does not overlap with any test [\
sphere added in the time interval (0, t). s 5 ; O 57015 20 25
« 3D ghost RSA pair statistics at the terminal ' k'

packing fraction ¢, = 1/2% has been shown to
be realizable [Wang, Stillinger and Torquato, JCP
(2023)]. 1

* We realized the 1D and 2D cases here. ol

* Soft repulsion is more significant for the 1D case | |
than the 2D case, reflecting the decorrelation o 2 4
principle.




Designed critical point

« We target the antihyperuniform pair
statistics

e S(k) ~ k=1/2

r A
+ g2 =0(5—1) ((1)(1_% + 1>
D
» Correspond to critical points out of the
Ising universality class.

« We have realized these pair statistics in

1,2 and 3 dimensions with some chosen
A and p.

* Note the large clusters and holes
characteristic of critical-point fluids!
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Applications



Predict experiment feasibility

« We obtain pair statistics from a
polyethylene model [Yatsenko et al. PRL

(2004)] with parameters out of the 2

— Target

experimented range.

---- Optimized

* We find that these pair statistics are O

realizable by an effective potential. ' /

» Thus, they are probably achievable in

experiments, e.g., via polyethylene 0 1 2
molecules with a smaller number of mh
monomers per chain than those
considered by Yatsenko et al.

— Target
---- Optimized




Controlled mass transport

« To demonstrate that our analytical pair functions enable one
to achieve a wide range of structural order and physical
properties, we compute the translational order metric T and
the self-diffusion coefficient D for the 3D states.

t: ik O Ghost RSA |
9 p 39 é O Antihyperuniform
7=p [h*(r)dr = o Jra h*(k)dKk, :
5/ S d=3,p=1
@pl'/ng’/Q — 0.37(—82)_ / y To:: ocp @ OCP dual
g o Gaussian
Where :; Hyperbolic sccant
52 = —(p/2) Jyelga(r) Inlga(r)] — g2(r) + 1} N
0 1 2 3 4
* 1 is inversely related to D. Reduced self-diffusion coeff. .‘f.',(;-IBT]';;2

* Small T = Less hindrance of particle motion = large D

« Useful in controlled drug delivery and diffusion-controlled
catalysis



Database of realizable pair statistics

 Realizability via equilibrium classical states does not exclude the
possibility of realizing the same pair statistics via quantum-mechanical
equilibrium systems or even nonequilibrium systems.

« Our realizable pair functions can be used as basis functions to create new
designs at unit density

g5(r) = =1 Nigas(r), 0< XA <1,5rA = 1.

e If a given g,(r) is realizable at p = 1, then it is also realizable at all lower
densities because the realizable density range for a given g,(r) is always
a continuous interval [Stillinger and Torquato, Mol. Phys. (2005)].

24



Conclusions

« Ourinverse methodology enables us to precisely determine

the unique potential corresponding to given pair statistics. <>
« Our method is expected to facilitate the self-assembly of

soft-matter systems with tunable properties.
« Further support the Zhang-Torquato conjecture:

A

« any realizable set of pair statistics, whether from a nonequilibrium or
equilibrium system, can be achieved by equilibrium systems involving up to
two-body interactions
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