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The potential energy surface (PES) of a chemical system is an analytical function that outputs the
potential energy of the system when a nuclear configuration is given as input. The PESs of small
atmospheric clusters have theoretical as well as environmental significance. A common method used to
generate analytical PESs is the Shepard interpolation, where the PES is a weighed sum of Taylor series
expansions (nodal functions) at ab initio sample points. Based on this, in this study we present a new
method based on the Shepard interpolation, where the nodal functions are composed of a symmetric
Gaussian term and an asymmetric exponential term in each dimension. Corresponding sampling
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achieved root mean square errors (RMSE) below 0.13 kJ mol™ in 150 samples for Ar-rigid H,O and

Published on 04 February 2019. Downloaded by Princeton University on 5/25/2023 6:50:55 PM.

rsc.li/pccp

Introduction

The potential energy surface (PES) of a chemical system is an
important concept in theoretical chemistry that has wide
applications including spectral analysis," protein folding,>™* and
reaction dynamics.” Based on the Born-Oppenheimer approxi-
mation, the PES refers to a function that outputs the electronic
potential energy of the system when a nuclear configuration is
given as input. For a nonlinear molecule with N atoms, the PES
is a function of 3N — 6 independent degrees of freedom.®”
However, “redundant dimensions” can be present depending
on the choice of the coordinate system that describes the
nuclear configuration. In the 1990s and early 2000s, there has
been controversy or reservation about using all internuclear
distances as coordinates because of this “redundancy”, and
there were suggestions of using different sets of 3N — 6 internal
coordinates in different regions of the configuration space, e.g.
in ref. 8. However, starting with Bowman’s group, recent decades
have seen successful uses of all internuclear distances, or “Morse
variables” derived therefrom.*°

Recently, due to the increasing awareness of human impact
on the atmosphere, there has been extensive theoretical interest
in the PESs of atmospheric clusters."'™® These are small
systems of common atmospheric molecules, e.g. N,, O,, Os,
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Ne-rigid CO,, and below 0.39 kJ mol™ in 1800 samples for rigid N,-rigid CO».

H,0, Ar and CO,, interacting through van der Waals forces or
hydrogen bonds. Careful investigations of these clusters can
shed new light on current environmental issues concerning
atmospheric chemistry. For example, it has been predicted that
as CO, forms clusters, its usually symmetric stretch mode »4 can be
significantly asymmetric and absorb infrared radiation, contributing
to the greenhouse effect together with its usually asymmetric
vibrational modes, v, and v;.'*

Due to the small sizes of atmospheric clusters, ab initio
single point energy (SPE) evaluations with very high accuracy
(1.0 kJ mol™") can be achieved.'* However, a thorough under-
standing of their possible interactions demands the generation
of accurate analytical PESs over a global range of chemically
and physically interesting configurations using a finite set of
ab initio data, which remains a challenging task. The advantages
of an analytical PES over pointwise evaluations include faster
SPE retrieval, easy mathematical treatment and convenience of
visualization. Typically, generating an analytical PES involves
three aspects: the basic form of the function, the sampling of
the configuration space (for ab initio calculations), and finally,
the fitting or interpolation method that gives the global PES.®

There are many milestones for all these aspects. The requirement
for the PES to be symmetric with respect to permutations of like
atoms has been explicitly stated by Murrell and colleagues in their
classic monograph.' To incorporate this permutational symmetry,
theories of symmetrized coordinates'® and invariant fitting bases'”
have been developed for triatomic and homonuclear tetra-atomic
systems. More recently, the least squares fitting of permutationally
invariant polynomials (PIP) was developed for high dimensionality
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by Braams and Bowman.'® The many-body expansion (MBE),
first applied by Varandas and Murrell to PESs of H,, systems,"®
has become a widely used approach to model asymptotic
regions of configuration spaces.*'>'*?! Common sampling
methods include random sampling from a grid of bond lengths
and angles. There are, however, more sophisticated sampling
methods such as Mutually Orthogonal Latin Squares that aim to
cover a wide range of a high dimensional space.* The Bowman
group has used scattered sampling methods, where samples are
generated from molecular dynamics simulation data with
widely different trajectories, effectively sampling a large range
of configurations and energies.**

One of the most successful interpolation methods is the
modified Shepard interpolation proposed by Collins and colleagues
in 1994.%% 1t represents the PES as a weighed sum of Taylor
expansions in inverse internuclear distances up to the second order
on each sample. The weight of a sample at a configuration is
inversely proportional to the distance between the configuration
and the sample. In addition, the group proposes an iterative
sampling scheme that outperforms random sampling, adding
in each round new samples that are distant from existing
samples. Problems of the modified Shepard method include
bump- or step-shaped artifacts where distinct samples compete
for dominance. Various studies have been focusing on reducing
such effect.”>** Another problem with the modified Shepard
interpolation is that the number of ab initio points needed to
calculate the second derivatives grows as the square of the
number of dimensions, making the method computationally
expensive for large systems.

More recently, some groups have studied the application of
Gaussian Process (GP) in PES generation.”>>° As another
method of interpolation, it uses Gaussians instead of Taylor
expansion as nodal functions. Being a less dramatically varying
function than the polynomial, the Gaussian has promises to
reduce artifacts. It also provides a natural estimation of error at
not-yet sampled configurations, thereby providing an iterative
sampling scheme where points with large estimated errors are
added to the sample set. GP has been used successfully in modeling
three-dimensional PESs of proton transfer in crystals.”® Very
recently, PIP-GP approaches have been developed to incorporate
permutation invariance into GP.*® The application of GP to higher
dimensional gaseous systems, however, has been largely limited by
the inflexible width of the Gaussian nodal functions and the fact
that Gaussians are inevitably symmetric at samples, making it hard
to account for first derivatives.

In this study, we developed a new form of nodal functions
that aims to tackle the limitations of GP. It composes of a
symmetric Gaussian part and an asymmetric inverse-exponential
part for each dimension, both having flexible widths and ampli-
tudes. We also proposed an iterative sampling scheme compatible
with these nodal functions. We tested our method on three
atmospheric clusters: Ar-rigid H,0,*' Ne-rigid CO,,”® and rigid
CO,-rigid N,." The focus for this present paper is on non-covalent
interactions, with expectations of possible application to atmo-
spheric science. For example, the PES for the clusters can serve as
a perturbation term for the rovibration spectrum of interacting
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atmospheric molecules, with the monomers as the “base case”, in a
similar spirit to ref. 32. Nevertheless, we believe that the method
itself is general enough to also deal with reacting molecules.

We focus only on interpolation of ab initio data in this
current study, while noting that the dissociation regime can
be well described by MBE methods, and that potential functions
accurate for different regimes can be combined to give a global
PES, e.g. with the energy switching (ES) approach developed by
Varandas.**™*

We will first explain the general methodology and then discuss
the specific implementations and results for the different clusters.

Methodology
Nodal functions

We use internuclear distances to describe configurations. As all
clusters we study are rigid, only intermolecular internuclear
distances are included. For example, in the cluster Ar-rigid
H,O0, configurations are defined by the internuclear distances
(Ar-O, Ar-H', Ar-H?). Given the configuration vector r of a
sample with ab initio energy E,, the nodal function V, is
expressed by a Gaussian symmetric term (resembling the s
orbital) and an asymmetric term (resembling the p orbital) in
each dimension, plus the constant E,, ensuring that the nodal
function passes through the sample, i.e. V{(r) = E,, as shown in (1).

Vi®) =)

[Ai(’:i _ rl_)e—li(f‘i—h)z + B (e—ﬁi(7i—l‘1)2 _ 1)] +E,

1)

where f is any arbitrary configuration in the vicinity of r. For each
dimension, the parameters 4; and «; are amplitude and width of
the asymmetric term. B; and f5; are amplitude and width of the
symmetric term. o; and f; must be positive.

All parameters 4;, B;, o;, ff; need to be determined. The most
obvious way is to fit the parameters based on ab initio calculations
on a set of configurations surrounding each sample, which we
terms as co-samples. We then optimize the width parameters with
a rather “brute force” line search, first letting «; increase from 0.01
to 50 with increment 0.01, while all other widths are initially fixed
at 0.01. For each value of o,, the amplitude parameters A4; and B;
are obtained by linear regression; a least-squares regression error
is thus generated. The value of o, that gives the smallest regression
error is taken to be optimal and fixed, while the next width
parameter, e.g. o,, undergoes optimization, and so on for all o,
pi. After all widths undergo optimization, the whole process starts
over from o4 again and repeats for totally three rounds. This
regression scheme apparently does not search for the global
optimum of «; and f; but as we will see in the next section, it
turns out to be a rather practical scheme.

The permutational invariance, i.e. the requirement that
when two atoms of the identical element switch position, the
potential energy should remain the same, can be incorporated
easily. Whenever a sample is chosen, we also add its “permutational
twins” into the sample set. The nodal functions of the twin samples
are obtained by permuting the terms of the nodal function of

dim(r)
i=1
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the original sample. For example, if a sample of Ar-rigid H,O is
given by the internuclear distances (Ar-O, Ar-H', Ar-H?) =
(71, 12, 73) = ¥ with nodal function (1), then it has a twin sample
v’ = (ry, ry/, r3') = (r1, 13, r3) with the nodal function (2).

"2 ~ N2
Ve®) = Ai (7 = r')e™ (n=")" 4 B, (efm (rr') _ 1)
72 2
+ A3 <172 — 1’2,)3713 (fz*"l ) + B; (e*/% (l’z*rz ) _ 1)

+ 4 (fs - "3,)6sz () 4 By (efﬁz o) - 1) + Er
2

After the nodal functions of all samples are obtained, the
global PES V() is expressed as a weighed sum of nodal functions
using inverse distance weighing, as given by (3) and (4), identical
to the modified Shepard interpolation.*

VE) = > Vilf)we(F) 3)

sample r

where the weights w,(f) are such that for any arbitrary con-
figuration ¥

" 1 -
oy e > w1 @

sample r

for a constant p > 0.

We remark here that we have used a rather “brute force” way
to incorporate permutatioanal symmetry. In the systems studied
in the paper, the symmetry is relatively low and the limiting step
for generating the PES is the generation of the nodal functions,
i.e. the nonlinear and linear regressions to optimize A, B;, o;, f3;.
These steps do not need to be replicated for the replicated data.
However, for systems with higher permutational symmetry like
CHs, the “inference” step (3), i.e. the generation of the final PES
by weighing all the nodal functions may well be the limiting
step. In such cases, fast search algorithms exist in computer
science to search for the closest samples to an arbitrary configuration
(range queries),***” because only those contribute significantly to the
energy estimation. Alternatively, instead of replicating data, PIP
methods could be incorporated into our approach to make
the PES permutationally invariant in an efficient way, where
“primary invariant polynomials” described in ref. 18 of the
internal coordinates replace the expressions (7; — r;) in (1).'%3°
For non-covalent interactions, reduced permutational symmetry
can be used to further reduce computational cost.*®

Sampling

Simple random sampling over a grid of ab initio points in
Jacobian coordinates (defined in the next section) was tested
for all clusters studied here. The Jacobian coordinates must
be converted to internal coordinates to generate the nodal
functions. On top of random sampling, as we have mentioned
in the introduction, there are iterative sampling algorithms that
gradually improve the PES estimation as more samples are
added, and they generally make significant improvement over

This journal is © the Owner Societies 2019
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random sampling. Inspired by these works, we came up with
two ideas that could enhance sampling.

One of them is “error probing”. Since we use linear regression
to obtain the parameters and of the nodal functions, a regression
error is generated automatically at each sample. We reason that if
this regression error is large, the Gaussian nodal function does
not describe the energy in the vicinity of the sample very well.
Therefore, more samples are needed in that area to reduce the
PES estimation error effectively.

The second idea is ‘‘distance probing”, similar to that in
Collins’ work.”® The estimation error is expected to be large at
regions where samples are sparse. We want the range of the samples
to be as broad as possible, so that unfavorable extrapolation can be
prevented. Therefore, points far from existing samples are chosen as
new samples.

In practice, error probing and distance probing should
alternate with random sampling. Exactly how this can be done
will be described for individual systems in the next section.

For the more complex cluster rigid CO,-rigid N,, we also
developed a “Divide and Conquer” method, which probes for
samples separately in the wall, well and dissociation regions
before pooling samples together.

Application to atmospheric clusters

General aspects: co-samples, regression and the decay
exponent

The selection of co-samples around each sample is a crucial
step in generating the nodal functions. We choose co-samples
in a random fashion such that the sample-co-sample distances
(in the Euclidean metric on internal coordinates) are between
0.1a, and 1.0a,. The number of co-samples L around each
sample needs to be equal to or slightly larger than the number
of unknown parameters in (1), or L > 4-dim(r). Therefore, for
Ar-rigid H,0 and Ne-rigid CO,, L = 13. For rigid CO,-rigid N,
L = 25. Taking fewer co-samples than 4-dim(r) can lead to very
inaccurate nodal functions.

As we will explain for each cluster in the next subsections,
while the samples are truly ab initio points, the co-samples are
pseudo ab initio, generated from very accurate analytical functions.
We remark that this is a simplification, since some topological
features, e.g. nearby crossings that may also happen for non-
covalent interactions, do not appear in analytical functions used
to generate the pseudo ab initio points.*®

For all clusters studied, the “brute force” nonlinear regression
for «; and f;, together with linear regression for A; and B;, usually
gives least-squares errors of less than 0.05E, for samples in the well
region (i.e. 5% of the sample energy) and 0.15-0.50E, for samples
in the wall region. As expected, the asymmetrical amplitudes 4; are
larger at samples with large first derivatives, especially for samples
in the wall region, where local asymmetry of the PES is significant.
Therefore, we believe that we have found a rather practical method
for parameter determination. We also found that the regression
accuracy is much more sensitive to o; than to ff;. One could even
save computational resources by fixing all ; at 0.5 without
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changing the order of magnitude of the regression error. The
accuracy is insensitive to o; only within an order of magnitude.

The “decay exponent” p in (4) is an important parameter in
all interpolations using inverse distance weighing. It controls
the “blurryness” of the generated PES. Previous studies on the
modified Shepard interpolation shows that one must choose
p » 3N — 3 to ensure that samples far from ¥ makes no
contribution to the energy estimation at .2 It turns out that
our investigations of the Gaussian nodal functions yield similar
results. p between 10 to 15 works well for Ar-rigid H,O and
Ne-rigid CO,. For rigid CO,-rigid N,, we set p between 20 to 30.
It is observed that, as long as p lies in the ranges specified
above, the RMSE of the PES estimation is not sensitive to the
specific value that p takes.

Ar-rigid H,0

Coordinate system and ab initio details. The Jacobian coordinates
on which the ab initio data grid is based is shown in Fig. 1(a).
The water molecule is rigid with 7(OH) = 1.810a, and / HOH =
104.51°. The H,O0 is placed in the xy-plane with its center of
mass at the origin. The y-axis bisects / HOH and O is on the
positive half. The configuration can now be described by the polar
coordinates (R, 0, ¢) of Ar, where 0 < 0 < 90°, 0 < ¢ < 180°.

The ab initio data consists of 1584 symmetry-unique points
on a grid of (R, 0, ¢), described in ref. 31 with R ranging from
4.5-20a,. The grid points are denser near the equilibrium
values of R (6.2-7.2a,). The theory level and basis set is
CCSD(T)-F12(a)/AVQZ with standard counterpoise correction
of basis set superposition effect (BSSE).

In our algorithm of PES interpolation, the Jacobian coordinates
are converted to the internal coordinates (Ar-O, Ar-H', Ar-H?). A test
set of 100 symmetry-unique points is chosen from the grid. All
samples are also chosen from the grid, but points in the test set are
not allowed to be samples. The energies of the randomly chosen
co-samples are obtained from a fitted analytical form given in ref. 31
which has been shown to give discrepancy within 10~ em™* (1.2 x
10> kJ mol ") compared to direct ab initio calculations.

Analysis of sampling. The sampling algorithm, described by
three integers (S, D, E), is an iterative process, in which each
round consists of three actions that add new samples, described
as following.

1. Randomly select S symmetry-unique samples.

@

o 6,9)
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2. (“Distance probing”) randomly select 100 symmetry-unique
“probe points” that are not yet samples. For each probe point, obtain
its distance to its nearest existing sample (using the Euclidean metric
on internal coordinates). The D probes points with largest distances
to existing samples are added as new samples.

3. (“Error probing”) randomly select 100 symmetry unique
“probe points” that are not yet samples. For each probe point,
we obtain an estimation of error by averaging the linear regression
errors of its three nearest samples. The E probes with largest
estimated error are added to the sample set.

Steps 1 through 3 are repeated while the RMSE of the test set
is monitored, until 250 samples are obtained. Fig. 2(a) shows the
variation of RMSE with the number of samples for four settings
of (S, D, E). Note that the setting (50, 0, 0) is identical to simple
random sampling. Each curve is the average result of 5 runs.

It can be observed from Fig. 2(a) that the error probing step
is very helpful in reducing the error from early on. RMSE of around
100 pE (0.26 k] mol ™) can be achieved within 50 samples using
the setting (35, 0, 15), and the final error converges at 20-50 pEy
(0.05-0.13 k] mol ). On the other hand, using distance probing
without error probing seems to be detrimental to the PES
estimation in this system, probably because in the first rounds
the distance probing step finds distant points in the trivial
dissociation region. The RMSE for the combined probing
setting (35, 5, 10) converges to the same limit of 20-50 pEj,
but the RMSE is relatively high before 150 samples. Note that
150 samples, with all their co-samples, actually require as many
ab initio data as the grid itself, but the fact that local behaviors
at the 150 samples can predict the global PES accurately shows
that our nodal function is probably suitable for PES description.
This sets the stage for investigations of higher dimensions.

Visualization of PES estimation. To visualize the quality of
PES estimation and to understand the chemical distribution
of the estimation error, we fix 0 at 90° (i.e. fixing Ar on the
xy-plane). We plot, in Fig. 3, the true ab initio energies and the
estimation error against the position of Ar on the xy-plane. The
PES was generated from 250 random samples. It can be seen
that the error is high exclusively in the wall region, whereas
the well and the dissociation region are well estimated. The
errors at the wall are systematically positive, possibly due to
extrapolation at configurations whose R are smaller than those
of the samples.

Fig. 1 The Jacobian coordinate systems of the ab initio data grid for each of the clusters studied in this work. (a) Ar—H,O. (b) Ne—-CO5. (c) CO,—-N..
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Fig. 2 Variation of RMSE during iterative sampling. The curves correspond to different iterative sampling schemes represented by (S, D, E) described in
the text. (a) On a 100-point test set for Ar—H,O. (b) On a 200-point test set for CO,—N,.
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Fig. 3 Ab initio energy and estimation error for the “slice” 6 = 90° of the PES of Ar—H,O. PES generated by 250 samples obtained through the iterative
sampling setting (S, D, E) = (35, O, 15). Averaged over 3 runs. Energy unit is £, and box dimensions are in ao.

Ne-rigid CO,

Fig. 1(b) shows the Jacobian coordinates (R, 0) defining the
ab initio data grid, described in ref. 28. R is the distance between
C and Ne. 6 is the angle between the C—Ne vector and the
CO, molecular axis. The geometry of rigid CO, is fixed at
r(CO) = 2.196a,. The ab initio data consists of 1200 symmetry-
unique points, with ranging from 4.0 to 20.0a,. The theory level
is CCSD(T), and the basis set is AVTZ for C and O and atomic
natural orbital (ANO) 6s5p3d2f for Ne. Standard counterpoise is
used to correct for BSSE.

The internal coordinates (Ne-C, Ne-O', Ne-0?) are used for
our model. A random set of 40 symmetry-unique points from
the grid with R between 4.5 and 15q, is chosen as the test set.
Samples are chosen from the same grid and exclude the test
points. Co-sample are randomly chosen around each sample,
and their energies are obtained from the analytical form given
in ref. 28 which achieves RMSEs less than 0.03 cm ™" (3.6 x
10~ kJ mol ") compared to direct ab initio calculations.

The performance of the sampling schemes is similar to the
case of Ar-rigid H,O, but the RMSE drops much faster due to
the simplicity of the actually two-dimensional PES. Even with
random sampling, the RMSE can be reduced to 30-100 pEj
(0.08-0.26 k] mol™") within 50 samples and converges to below
50 WEy, (0.13 k] mol ') in 150 samples. Using the setting (S, D, E) =
(35, 0, 15), the RMSE can converge to 20 puEy (0.05 kJ mol ') in

This journal is © the Owner Societies 2019

150 samples. This RMSE value is comparable to that of the basic
Gaussian Process interpolation described in ref. 40. Same as
Ar-H,0, the error increases with decreasing R on the wall
region. Since there are three internuclear distances but only
two actual dimensions, the results for Ne-rigid CO, show that
our model works well with redundant internal coordinates.

Rigid CO,-rigid N,

Coordinate system and ab initio details. Fig. 1(c) shows the
Jacobian coordinates (R, 64, 0,, ¢) defining the ab initio data
grid, as described in ref. 11. R is the distance between C and
the center of mass Y of N,. 0; = / O'CY. 0, = / CYN"'. ¢ is the
dihedral angle O'CYN". The configurations of CO, and N, are
frozen at r{CO) = 2.21727a, and r(NN) = 2.10665a,. The grid
consists of 21840 symmetry-unique points, with R ranging
from 4.0 to 30.0a,. However, we restrict our attention to the
test configurations whose minimum intermolecular internuclear
distances dn, lie between 4.5 and 15.0a,. The sampling space
consists of configurations with d,,;, between 4.45 and 15.1a,. We
want the sampling space to be slightly larger than the test space to
reduce unfavorable extrapolation. The ab initio theory level and
basis set are CCSD(T)-F12(a)/AVTZ, with standard counterpoise to
correct for BSSE.

The internal coordinates (N'-C, N'-0", N'-0?, N*>-C, N>-0',
N>-0?) are used for our model. We use two kinds of test sets.

Phys. Chem. Chem. Phys., 2019, 21, 4513-4522 | 4517
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The first is a random set of 200 symmetry-unique points from
the grid. The second is the entire ‘“slice” on the PES with 0, = 0,
¢ =0, used for visualization of PES. All samples are chosen from
the grid, excluding the test points. Co-samples energies are
obtained from the analytical form given in ref. 11, which
achieves RMSEs less than 1.0 cm ™" (0.012 kJ mol™") compared
to direct ab initio calculations.

Analysis of sampling. We tried the iterative sampling scheme
discussed above in the section of Ar-H,O. The performance of
four settings within 600 symmetry-unique samples is given in
Fig. 2(b). RMSE is calculated for a 200-point test set. Each curve is
the average of 5 runs.

Unlike in Fig. 2(a), we see that here the sampling schemes
do not show significant difference from each other in terms of
RMSE variation. It can only be observed that, compared to the
simple random sampling, the settings with error probing or
distance probing are more reliable in reducing the error steadily
during sampling. The random sampling curve (S, D, E) = (50, 0, 0)
has several significant rises, whereas the other curves almost
monotonously decrease after 100 samples. However, as sampling
goes on, the random scheme can also spot good samples and
obtain an accuracy comparable with schemes using probing.

The RMSE converges at about 1500 samples. Even for the
same test set, the final converged RMSE vary greatly, ranging
from 70 to 300 KE;, (0.18-0.79 kJ mol ). This large range suggests
that there may still be room for improvement of sampling.

“Divide and Conquer” for sampling. We found that the
RMSE can be reliably limited to around 100 pE; when we
restricted the test set and the sample set to points whose dyyin
are greater than 5.0a,, but no significant improvement was
observed if we only restricted the test set. We speculated that
the configurations at the wall region, having very high energy,
interfere with the sampling or the energy estimation at the well
region. Conversely, the samples in the well region may influence
the estimation of the wall configurations. Thus, the idea of a
“Divide and Conquer” strategy seemed immediately promising:
one could probably improve the full PES estimation by estimating
disjoint regions first.

In light of this observation, we separated the PES into
3 pieces (units in ay):

e “Wall” for test points with 4.5 < dnin < 5.5, samples with
4.45 < dpin < 5.65

o “Well” for test points with 5.5 < dp, < 10.0, samples
with 5.4 < dpin < 10.1;

e “Tail” for test points with 10.0 < d,;, < 15.0, samples
with 9.9 < d,i, < 15.1.

The boundary d,,;, between Wall and Well (5.5a,) was so
chosen because it is approximately the sum of the van der Waals
radii of N and C (or N and O), where we expect collisions to occur.
The boundary d,,;, between Well and Tail (10.0a,) corresponds to
configurations with absolute values of energy below 100 pE;,. These
choices make the unlikely assumption that whether a point
belongs to Wall, Well or Tail depends only on d,;,. However, as
we shall see, it proves to be a simple and useful approximation.

We intend to sample separately for each piece. We therefore
tested, for each range, how many samples are needed to
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bring down the error to a reasonably low value. The following
is observed.

e Wall: the RMSE converges to 150-500 pE;, in 800-900 samples;

e Well: the RMSE converges to 20-80 pEy, in 500-600 samples;

e Tail: the RMSE converges to <15 pE;, in 600 samples, but
just 200 samples are needed to bring it down to below 80 pE;,.

Therefore, we divide 1800 samples into 900 in Wall, 600 in
Well and 300 in Tail. Sampling is done for each piece separately,
with random sampling alternating with distance probing and error
probing with (S, D, E) = (35, 5, 10). Then we pool the 1800 samples
together to form a final global PES according to (3). Note that (3)
guarantees the final PES is smooth, i.e. we divided the configu-
ration space only for better sampling, and did not generate
separate PESs for different regions. However, there exist methods
where PESs accurate for separate regions are obtained and
combined, e.g. energy switching mentioned in Introduction.

To see how our piecewise algorithm performs for the four-
dimensional PES of rigid CO,-rigid N,, again, 200-point random
test sets are chosen. The estimation results on the test sets
are shown in Fig. 4(a-c). The improvement of (c) over (b) is
clear. The RMSE with piecewise sampling is 40-150 pE; (0.10-
0.39 kJ mol "), a significant improvement in stability from the
70-300 without the piecewise algorithm.

To visualize the estimated PES, we examine the ‘“slice” with
0, = 0, ¢ = 0. Fig. 4(d and e) shows the performances of
estimating this slice for sampling algorithms with and without the
sampling algorithms. It is clear that the latter algorithm gives much
better estimation at the wall and the well regions (better overlap of
the yellow and blue surfaces), but the estimation is worse at the
dissociation region because samples are relatively sparse there.
Overall, the RMSE of the estimations of the slice is 50 vs. 80 LUEy
with and without the piecewise algorithm, respectively. This “Divide
and Conquer” strategy yields a peculiar three-piece RMSE decrease
pattern as the sample size increases, shown in Fig. 4(f).

The piecewise algorithm may have reduced the error by the
simple fact that it samples more intensely at the chemically
important wall and well regions, instead of wasting too many
samples at the dissociation region, or by the fact that it
separately treats the wall and the well, preventing their cross-
contamination by providing more focused spaces for random
sampling and distance and error probing. Our conjecture is that
the second factor at least plays more than a trivial role because, as
we have observed, the well region PES can be much better
estimated when the wall points are excluded from the sample set.

The potential shortcoming of the “Divide and Conquer”
method is that for a larger system, there may be many more
features that turn out to be relevant for the PES, and the boundary
between Wall, Well and Tail may be much less well-defined by
dmin- However, the generation of boundaries may be automated by
considering the van der Waals radii of all atoms in a system.

Analysis of error. As in the section of Ar-H,0, we want to know
where large errors occur. Fig. 5(a and b) show the estimation
error of 200 test points, plotted against their R and 0,, (a) being
the front view and (b) being the top view, where a darker area
means a larger error. The underlying PES is generated with 1800
samples by the piecewise algorithm described above.
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Fig. 4 The effect of the "Divide and Conquer” strategy in PES estimation of CO,—N,. For all runs, the sample size is 1800. (a—c) True and estimated
energy at 200 test points with (a) random sampling, (b) iterative sampling with error probing and distance probing, and (c) piecewise sampling with
iterative probing. Horizontal axes are the test point indices. All estimation curves (red) are results averaged over 3 runs. (d and e) True and estimated PES
on the slice 0, = ¢ = 0, with and without the piecewise sampling algorithm. Averaged over 3 runs. Energy unit is £, and box dimensions are in ao.

(f) Variation of RMSE during piecewise sampling. The horizontal axis is the
regions can be observed.

It is clear from Fig. 5(a and b) that the error does not simply
increase with decreasing intermolecular distance. Some con-
figurations with a smaller R are better estimated than config-
urations with a larger R. The large-error configurations appear
as ‘“spikes” in Fig. 5(a). According to Fig. 5(b), these spikes
appear at intermolecular distances of 6-8a,, as if forming a wall
surrounding CO,. We hypothesize that large errors are likely to
occur at R values where some orientations are colliding but others
with the same R are non-colliding. The “switch of nature” of the
system puts it at the boundary of the wall and well regions, making
it harder to make accurate energy predictions from samples.

To test this hypothesis, we pick the configurations with largest
errors, fix their R, 0; and survey their ab initio energy as their 6,
and ¢ vary. Fig. 5(c) shows the ab initio energy profile at
R = 7.25a,, 0; = 30°. (These values correspond to the highest
spike in Fig. 5(a).) Apparently, the energy depends heavily on 6,,
dropping from more than 11000 pE, for 0, = 0° to only about
200 UE;, for 6, = 90°. The dependence of energy on ¢, on the other
hand, is insignificant. We therefore fixed ¢ at 60° arbitrarily and
visualized configurations with R = 7.25a,, 0; = 30°, ¢ = 60° at
different values of 0, using space-filling models with van der

This journal is © the Owner Societies 2019

number of samples. Two sharp drops corresponding to switches of sampling

Waals radii given by ref. 41. The models are shown in Fig. 5(d).
As expected, a transition between colliding and non-colliding
orientations is observed. Smaller values of 0, give colliding
configurations, where the van der Waals surfaces of the molecules
overlap, while 0, = 90° is non-colliding. Analysis of other large-error
configurations gives similar transitions between collision and non-
collision. This discussion may have illustrated in a novel way the
significance of the van der Waals radius as a reliable parameter for
modeling intermolecular interactions.

Comparison with other interpolation methods

The number of necessary ab initio evaluations around each
sample increases as the square of the number of dimensions
for the Shepard interpolation, where Taylor expansion up to second
order, and therefore the Hessian matrices, must be calculated. For
our method, the number of necessaty co-samples L increases
linearly with the number of dimensions. Therefore, our method
has great advantage in computational efficiency compared to the
modified Shepard interpolation for higher-dimensional systems.
We are developing flexible algorithms to apply the method on
arbitrary dimers with up to 10 atoms.
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Fig. 5 Error of the estimated PES of CO,—No,. (a) Plot of error on a 200-point test set against R and 6 of the test points. Energy in Ey. Box dimensions in
ao. (b) The top view of the error plot; (c) ab initio energy of configurations with R = 7:25a0, 0, = 30°. The energy is sensitive to 6, much more than to ¢.
(d) Space-filling models of configurations with R = 7:25a, 0, = 30°, ¢ = 60° and various 0, using van der Waals radii. Both colliding and non-colliding

configurations are present.

To compare our Gaussian nodal functions with Taylor expansions
up to the first order, we applied both methods on a simple
hypothetical one-dimensional PES with the Morse potential (5).

V() = D1 — e TP — V(r) (5)

where we set . = 2a,, D, = V(r.) = 500Ey, a = 0.5. Four sample
points are arbitrarily chosen at r = 1.0, 2.0, 5.0, 10.0a,. On
the one hand, first order Taylor expansions in # ' — r~* are
obtained. On the other hand, Gaussian nodal functions are
generated with regression on 4 co-samples for each sample. For
both types of nodal functions, inverse-distance weighing (3)
and (4) are used with p = 6. Fig. 6 plots the hypothetical “true”
PES as well as those estimated by both types of nodal functions.
It is clear that Gaussian-form nodal functions are able to reduce
“bumps” compared to first order Taylor expansions. This is
because a Taylor expansion is, in a sense, strictly local, whereas a
Gaussian-form nodal function, being fitted with a set of co-samples,
promises to take care of a wider range of configurations around the
sample. It is also interesting to observe that in Fig. 6, it seems
that our method extrapolates beyond the leftmost sample at
1.0a, better than first order Taylor expansions. The shortcoming
of the Gaussian-form is that it does not promise to account for the
first derivatives exactly, and, of course, it is more computationally
expensive than first order Taylor expansions because of the
required calculations on co-samples and the “brute force”
nonlinear regression. More discussion will follow shortly.
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Fig. 6 Comparison of first order Taylor expansions and Gaussians as nodal
functions in modelling a hypothetical one-dimensional PES. Horizontal axis
in ao.

Compared to the full Gaussian process, our method seems
to be significantly better thanks to the asymmetric terms and
the flexible width parameters in the nodal functions. In our
preliminary studies on the flexible water dimer, the RMSE we
achieved with simple GP was 650 UE}, (1.71 kJ mol ) with 1200
training data. Though the clusters in this study are all rigid,
intramolecular vibrations are not expected to perturb the PES
remarkably, since ground states’ mean vibrational amplitudes
should be on the order of 0.05 A,*> much less than the length

This journal is © the Owner Societies 2019


https://doi.org/10.1039/c8cp07640e

Published on 04 February 2019. Downloaded by Princeton University on 5/25/2023 6:50:55 PM.

PCCP

scale considered for the rigid-body PES. Therefore, we believe
that our method presented here will give more accurate PES
estimations than the full GP for flexible clusters. This conjecture,
however, must be rigorously tested. In addition, we note that the
computational effort of full GP increases as the cube of the number
of training samples, because matrix inversions are required to
compute the correlations between samples.*>* It is therefore very
time consuming to use the GP once the training data size exceeds
1000. For our method, on the other hand, the computational cost
scales linearly with respect to the size of ab initio data.

There are two major limitations to our approach. The first
limitation is that the nonlinear regression does not search for
the global minimum. To find a global minimum, “multistart”,
i.e. different sets of initial values of «; and f; or general
optimization techniques like simulated annealing** should be used.
However, we have noted that the error of the final PES is not
sensitive to ff; and not sensitive to «; within an order of magnitude.
With multistart experiments on our 1D hypothetical PES, we find
that both multistart and one-off nonlinear regression can agree on
the order of magnitude of o, The reason is partly that the linear
regression step, with optimizations on 4; and B;, usually does well to
give a nodal function describing the local features around a sample.
We assumed that this is true also for more than one dimensions, but
this is admittedly a compromise because it is very computationally
expensive to do multistart regression for all o; and f;.

The second major limitation is the large number of co-samples
required, whose ab initio energies require huge computational
costs if a PES is to be constructed de novo. This is also a limitation
for Taylor expansions, as derivatives must be obtained numerically.
Our method requires less co-sample data than second order Taylor
expansions but more than first-order. We have the following
suggestions regarding this limitation, but further testing must
be done.

Firstly, if derivatives of the PES are also of interest, some
data needed for computing derivatives can act as co-samples.
Secondly, the co-samples can be shared between samples if the
samples are close enough, e.g. the Cartesian distance between
the two samples are less than 2.0a,. A sample can also act as a
co-sample of another sample if they are close enough. This
sharing can reduce the required number of ab initio calculations by
at least half. Thirdly, the ab initio calculations of the co-samples do
not need the same degree of accuracy as the samples, and may be
accomplished by a faster method with a lower theory level or smaller
basis set, probably with adjustments such that the energies of the
samples match between theories.

Conclusions

We have presented a new interpolation method based on the
modified Shepard interpolation, in which the nodal functions
are composed of a symmetric Gaussian term and an asym-
metric exponential term in each dimension. The parameters in
the nodal functions are determined by regression on ab initio
co-samples around each sample. An iterative sampling scheme
has been developed to add samples where errors are expected to
be large. We are able to achieve an RMSE below 0.13 kJ mol *
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in 150 samples for Ar-rigid H,O and Ne-rigid CO,, and below
0.39 kJ mol ™" in 1800 samples for rigid N,-rigid CO,. For the
last system, we found that sampling separately in the wall, well
and dissociation regions is very useful to reduce the error.
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